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a b s t r a c t

Rapid response to medical emergencies is one of the main goals of Emergency Medical Service (EMS)
systems. Ability to provide timely response is affected by fleet size and the locations of the ambulances.
Literature on ambulance location has been dominated by models which either maximize coverage, or
guarantee coverage within some threshold. Recent work has shifted the objective from maximizing
coverage to improving patient survivability. In this paper we compare the performance of three recent
ambulance location model objectives by applying a simulation–optimization framework. Our findings
show that the maximum survivability objective performs better in both survivability and coverage
metrics. Further, the results also support using the survivability objective for resource constrained
ambulance operators.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Rapid response tomedical emergencies is one of themain goals
of Emergency Medical Service (EMS) systems. Although, there is
no global standardized response time (RT), in the US most EMS
providers adopt the National Fire Protection Association’s 1710
standard. [1], which is 8 min 59 s for 90% of life threatening calls.
EMS providers routinely report the number of calls they reached
within the response time thresholds (RTT) as a key performance
statistic. Consequently, research of EMS models in the past has
predominantly focused on improving performance against pre-
specified RTT and ‘‘coverage’’ criteria [2–4].

There are two major drawbacks of the earlier models. First,
they necessitate simplifying assumptions on fundamental issues,
i.e., call coverage, relocation of ambulances, and busy probabili-
ties in order tomake themodels mathematically tractable [5]. Sec-

∗ Corresponding author.
E-mail addresses: adeel.zaffar@lums.edu.pk (M.A. Zaffar),

hrajagopalan@fmarion.edu (H.K. Rajagopalan), saydam@uncc.edu (C. Saydam),
memayorg@ncsu.edu (M. Mayorga), esharer@fmarion.edu (E. Sharer).

http://dx.doi.org/10.1016/j.orhc.2016.08.001
2211-6923/© 2016 Elsevier Ltd. All rights reserved.
ond, coveragemodels are not sensitive to patient survivability out-
comes [5–7]. For example, it is vital for a patient suffering from a
cardiac arrest to receive care in the first four minutes [8,9]. How-
ever, coveragemodels consider a call to be covered as long as there
is an ambulance available within the RTT, such that there is no dis-
tinction between a four-minute or a five-minute response time.
Furthermore, coverage models do not differentiate between dif-
ferent locations within the same RTT. Recognizing the need to link
patient outcomes to response times, there have been attempts re-
cently to specifically incorporate survival functions into existing
coverage models. Erkut et al. [6] were the first to develop such
a model. Their work was extended by Knight et al. [7], who pro-
posed incorporatingmultiple survival functions and developed the
Maximal Survival Locationmodel for heterogeneous patients. Ban-
dara et al. [10] studied optimal dispatching policies to maximize
patient survivability via a Markov decision process. McLay and
Mayorga [11] also used a Markov decision process to make dis-
patching decisions; they reformulated the problem into a lin-
ear program and added equitability constraints, including survival
probability. Bandara et al. [12] proposed a heuristic for dispatch-
ing ambulances to increase survival probability in real-world sized
problems. Mayorga et al. [13] extended Bandara et al.’s work by
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incorporating integrated districting and dispatching policies,
which theoretically increase patient survivability rates.

An important contribution of this paper is to incorporate a
simulation–optimization approach for locating ambulances under
a given objective. We are able to remove the majority of the
assumptions employed by analytical approaches and develop a
more realistic model that includes real-life operational practices;
such as dispatching ambulances as soon as they leave an incident
site, or as they are in transit to their assigned waiting station or
location. We conduct a series of experiments in which a number
of performance measures (e.g., coverage, response time, patient
survivability and busy probabilities of the individual ambulances
across several time periods) are compared using three different
objective-optimization functions:maximizing coverage,minimizing
average response time and maximizing survivability. Over 60,000
actual emergency call data received in ametropolitan area are used
to test the objectives.

Test results reveal that under real life like conditions the Max-
imum Survivability objective is statistically better than the Mini-
mum Average Response Time and Maximum Coverage objectives
in terms of survivability, as well as coverage. This exciting result
further highlights the importance of developing emergency re-
sponse systems that incorporate patient survivability functions in-
stead of using proxy measures such as expected number of calls
covered within an RTT that indirectly estimate patient survivabil-
ity. An in-depth analysis of our test results reveals several addi-
tional interesting insights. First, and somewhat surprisingly, the
MaximumSurvivability objective proved to be superior to theMin-
imum Average Response Time objective in terms of coverage. The
difference is statistically significant, in spite of the fact that sur-
vivability is essentially a function of response time. Second, an in-
teraction effect was found between performance indicators of the
system and fleet size. For example, if the fleet size increases the
difference between the Maximizing Patient Survivability and the
MinimizingAverageResponse Timeobjectives in terms of coverage
reduces. Intuitively, this implies that emergency response man-
agers with smaller fleet sizes (i.e., fewer ambulances) should adopt
patient survivability objective instead of average response times.
Third, theMaximum Survivability objective outperforms other ob-
jectives with respect to the percentage of calls covered within
3 min, as well as 3–6 min-margins with no reduction in the total
coverage. These numbers are encouraging in light of the criticality
of time sensitive response requirements for certain emergencies.
Finally, we also shed light on the issue of workload balance within
the context of public resource management by analyzing individ-
ual busy probabilities of ambulances across the different optimiza-
tion objectives.

The remainder of this paper is organized as follows. In the next
section we provide a brief review of the relevant literature on
ambulance location and coveragemodels, patient survivability and
simulation-based models in the area of emergency deployment. In
Section 3we present our researchmethodology. Section 4 contains
an in-depth discussion of our results. Finally, Section 5 concludes
with a summary of our findings and potential directions for future
research.

2. Literature review

The literature on ambulance location problems began with
covering problems in the 1960 sand has received significant
attention over time. Interested readers are referred to ReVelle et al.
[14] and Farahani et al. [3] for comprehensive reviews of location
models. In addition, Brotcorne et al. [2], Goldberg [4], and Li et al.
[15] provide in-depth reviews of recent developments regarding
ambulance location problems and optimization techniques applied
in this area.
Although coverage models can provide valuable information
regarding location decisions, the necessarily simplified and
restrictive assumptions regarding various operational aspects of
the EMS system can limit the usefulness of these types of models,
particularly with respect to our objective of increasing patient
survivability. For example, coverage models do not differentiate
between ambulances as long as the ambulance is within some
given threshold, either with respect to time or distance. Hence,
these models fail to consider the proximity of an available
ambulance to the demand point, which can easily result in the sub-
optimal deployment of ambulances in some cases.

Rajagopalan and Saydam [16] proposed theMinimumExpected
Response Location Problem (MERLP) to address this particular con-
cern. They used expected time, or distance weighted coverage,
measures to ensure that the search algorithm did not treat all
ambulances located within the coverage distance homogeneously.
Similarly, Erkut et al. [6] demonstrated the drawbacks of using bi-
nary coverage metrics in coverage models. The authors developed
a survivability function based on the incidence of cardiac arrest
events, and incorporated this function into existing coveragemod-
els. The Maximal Survival Location Problem (MSLP), developed by
Erkut et al. maximizes the expected number of patients who sur-
vive. The authors conducted extensive experimentswith data from
Edmonton, Canada. Their findings showed thatmaximizing the ex-
pected number of survivors can in fact result in ambulance lo-
cation decisions that can potentially save more lives. McLay and
Mayorga [5] simplified the survival function developed by Larsen
et al. [17] to make the probability of survival only a function of re-
sponse time. The authors compared a discrete optimization model
based on RTT with another model based on maximizing the sur-
vival function. Knight et al. [7] developed the Maximal Expected
Survival Location Model for Heterogeneous Patients (MESLMHP),
which was a notable extension of Erkut et al.’s seminal work. The
authors used a novel approach and made two important contribu-
tions: (1) MESLMHP incorporates survival functions for capturing
multiple-classes of heterogeneous patients thus enabling a more
realistic analysis for various outcomemeasures, and (2) by employ-
ing queuing theory, the authors extended the MESLMHP to model
traffic congestion, thus eliminating the need to compute each am-
bulances utilization a priori. Further, the authors demonstrated the
efficacy of their proposed models using data fromWales.

In the EMS location literature, simulation has been generally
utilized to verify the quality of solutions [18]. Savas [19] used sim-
ulation in New York City to show that a substantial improvement
inmean response time could be achieved by the dispersal of ambu-
lance depots away from hospitals and closer to high demand areas.
Swoveland et al. [20] utilize the output from a simulation to con-
struct an analytical approximation, or proxy, for mean response
times. The resulting combinatorial optimization problem is then
solved using a probabilistic branch and bound procedure to deter-
mine ambulance locations in Vancouver, Canada. Fitzsimmons [21]
developed a model to predict response times and to find the de-
ployment of ambulances that minimize average response times.
Their model uses a Monte Carlo simulation to estimate conditional
mean response times when two or more ambulances are busy.
Berlin and Liebman [22] combined ambulance stations with fire
stations by using the Set Covering Location Problem [23] and then
allocated ambulances based on the result of a simulation model
whose focuswas response times. Fujiwara et al. [24] used themax-
imum expected coverage location MEXCLP [25] model to screen a
large number of possible alternatives to derive a collection of so-
lutions. Each of these solutions was then evaluated using a simu-
lation. Liu and Lee [26], extending Uyeno and Seeberg’s [27] work,
employed a simulation to analyze an emergency call system for a
hospital in Taipei. Repede and Bernardo [28] utilized simulation
to evaluate their TIMEXLCPmodel which was applied in Louisville,
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Kentucky. Zaki et al. [29] developed a simulation model to study,
evaluate, and optimize the allocation of police patrol vehicles in
the City of Richmond, Virginia. Goldberg et al. [30] did a similar
study for ambulance location models. Borras and Pastor [18] also
utilized a simulation to verify the precision of their ex-post evalua-
tion method for the minimum local reliability levels of ambulance
locations. Restrepo et al. [31], while proposing analytical models,
recommend that simulation be employed to aid any final decision
making. Maxwell et al. [32] and Alanis et al. [33] used simulation
to find ambulance-to-base assignments. Mason [34] created a sim-
ulation–optimization algorithm to determine ambulance base lo-
cations in Copenhagen, Denmark. The author made a compelling
argument for using simulation–optimization models for am-
bulance location and relocation problems. Recently, Kergosien
et al. [35] developed a generic and flexible simulation model
which explicitly considers EMS response to emergencies and pa-
tient transport requests [35]. A detailed review of simulationmod-
els applied to emergency medical service operations can be found
in Aboueljinane et al. [36].

Our approach is based on prior research but extends it at
different levels. First, unlike Mason [34], ambulances in our model
are not tied to base stations. This allows for more realistic
placement and deployment of ambulances. Second, similar to
Kergosien et al.’s [35] simulation model we relax the assumption
of ambulance dispatch made in Mayorga et al. [13] by allowing
them to be dispatched enroute to their designated locations. Third,
we perform in-depth analysis of recently developed models by
comparing them on different measures: coverage, response time,
patient survivability and equitable workload distribution. Using the
simulation–optimization framework we compare and contrast the
results of each of the three objectives (models). We demonstrate
that focusing on patient survivability is superior to the other
two objectives (i.e., Maximizing Coverage and Minimize Average
Response Time) using various evaluation criteria.

3. Research methodology

The simulation approach allowed us to realistically capture
the ambulance operations from the dispatch time to service
completion time. We adapted the dispatch process presented by
Mason [34] by relaxing the restriction of tying ambulances to their
stations. Fig. 1 provides a flow diagram of the dispatch process
employed in our study. When an emergency call is received by
the dispatch center, the call is allocated to the closest available
ambulance using the Manhattan distance. The RT is initialized
with the average call taking plus chute times computed from the
data. Next, the ambulance is dispatched to the scene. We assume
that the ambulance travels approximately 36 mph, which is the
average travel speed for ambulances from the empirical data. This
assumption can be easily altered for future simulations, or even be
replaced with actual travel times using the method developed by
Kergosien et al. [35]. We compute the travel time via Manhattan
distance formula between the call and ambulance location divided
by the average speed and add it to determine the RT for the call.
The real data shows that over 80% of the calls require transport to a
hospital and the other require some on-scene time. Since our main
goal is to compare the effectiveness of the three different objectives
we opted for a simplified service completion time estimation. We
use the weighted average of on-scene and travel and drop-off
times, estimated from the data for each problem instance. The
ambulance then becomes idle and available for next dispatchwhile
traveling back to its original dispatch location (post).

As in Mason [34] we used trace driven simulation based on
the actual data. We organized the data into twelve two-hour time
blocks for each day, seven days a week. This gave us 84 different
problem sets. Each replication is a two-hour block and the number
Fig. 1. Ambulance dispatch process.

of replications is equal to the number of weeks. This approach was
adopted to accurately reflect the spatial and temporal distribution
of calls.

The first objective is to maximize coverage for which we
adopted the National Fire Protection Agency (NFPA) 1710 RT
standard which is 8 min 59 s for 90% of the calls [1]. Interestingly,
in 2009 about 64% of the largest 200 cities in theUnited Stateswere
using this standard and only about 28% of them reported being
in compliance [37]. We compute the coverage by counting the
number of calls reached under 9 min divided by the total number
of calls. The second objective to minimize average response
time which we implement by capturing actual RTs. The third
objective is to maximize patient survivability where we capture
the actual RT and evaluate survival probability, with max(0.594 −

0.055RT, 0) which is adapted from the function developed by
McLay and Mayorga [5]. We also track individual ambulance busy
probabilities in order to monitor workload balance. For each of
these objectives the decision variables are ambulance locations
and constraint is the fleet size.

Fig. 2 shows the experimental setup with 84 problem sets (7
days by 12 two-hour time blocks per day), which are run for a fleet
size of 20, 21, 22 and 23 servers for each of the three different
models. We consider the impact of the three different types
of independent variables (1) Objective (Maximize Survivability,
Minimize Average Response Time, and Maximize Coverage), (2)
Number of Servers and (3) Days, and times, of the week on four
different dependent variables (a) Coverage, (b) Survivability, (c)
Response Time, and (d) Workload balance. Workload balance can
also be viewed as equity among the crew members. Ideally there
should beminimal differences among their workload. In this study
we measure equity using the coefficient of variation, which is the
ratio of the standard deviation of how busy ambulances are, and
the average busy probability [38].

3.1. Optimization algorithm

There have been many heuristics successfully utilized in
covering models. Galvao et al. [39], for example, used simulated
annealing with the maximum expected coverage and the available
coverage model. Rajagopalan et al. [40], in their survey of the
performance of various meta-heuristics, concluded that, of those
meta-heuristics examined, tabu search yielded both fast, and near-
optimum solutions for problems with the objective of maximizing
expected coverage. In general, tabu search based algorithms have
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Fig. 2. Experimental setup.
been shown to be very fast in finding good solutions in this
domain [41–43]. For an extensive review of covering model and
corresponding optimization techniques, we refer the reader to Li
et al.’s [15] recent comprehensive review of said problems. We
chose to implement a variation of a tabu search meta-heuristic
called Reactive Tabu Search (RTS) [44]. Objective 1 is solved using
the RTS method. Then objectives 2 and 3 are initialized with the
final solution from objective 1 and optimized via local search
algorithm.

3.2. The Reactive Tabu Search (RTS) procedure

The RTS algorithm we develop for this paper is similar to the
one used in Rajagopalan et al. [45]. In our implementation, we use
a one-dimensional array of varying size to store a given solution
and the corresponding objective function value (Fig. 2). The initial
tabu size is set to one. Similar to [42], the basic operation in RTS, or
any other tabu search technique in this domain, involves moving
an ambulance from node i to node j, where node j is the best
location in the neighborhood. ‘‘Neighborhood’’ for this study is
defined to include nodes immediately surrounding the selected
node within a 9 mile radius. The first ambulance is selected for
the basic operation, and the best node from its neighborhood is
selected only if the (j, k) pair is not already on the tabu list. The
best node is selected based on the best coverage generated by the
simulation model. Once selected the (j, k) pair goes into the tabu
list. Allmoves (pairs) are stored in long-termmemory.We consider
this as a single iteration. The second ambulance is then selected for
the basic neighborhood search, and the process repeats until the
last ambulance within the neighborhood is selected, after which
the first ambulance to the last ambulance in the neighborhood is
selected again. The process continues for 100 iterations.

Throughout this search, the size of the tabu list changes
according to the exploration or exploitation pressure needed. For
example, if a move (i.e., (j, k) pair) is selected but is already stored
in long-termmemory, the tabu size increases to include thatmove.
However if the (j, k) pair in the tabu list is not repeated for 2m
iterations,wherem is the current number of servers, then that (j, k)
pair is removed from the list. As stated earlier, the terminating
rule for the current implementation of RTS is 100 iterations. This
number was selected after running a set of preliminary tests for
long periods of time (e.g., 1000 iterations or more). The results of
these preliminary tests showed that the incremental gains after
100 iterations were negligible. The set of locations generated
during the first 100 iterations, which resulted in the maximum
coverage, is then stored.

3.3. A local search algorithm

As stated earlier, solutions derived for objective 1 are used
as the initial, feasible, starting solution for objectives 2 and 3. A
local search algorithm is used to either minimize average response
times (objective 2) or maximize survivability (objective 3). The
total response time, or survivability, respectively, is generated
by running the simulation for a set of ambulance locations. The
local search algorithm takes the location of the first server and
searches through all possible locations within the neighborhood
to identify the node where the server should be moved so that
the objective function improves. Once the first server has been
moved to a ‘‘better’’ location, we continue the same process on
the second server. This is an iterative process that continues until
the last server (i.e., server m) has been evaluated and perhaps
moved to a new node. The search process continues again, through
all m servers. The process terminates when we go through all m
servers without changing the location of any server. There are two
reasons why we systematically move from the first server to the
last and then back again to the first: (1) to ensure that all servers
are selected an equal number of times, and (2) to establish a search
termination point where all servers have been checked without
any changes in their locations.

4. Results

The simulation model was coded in java (jdk 1.7) and run on a
laptop Intel Core i7-2630QM CPU @ 2 GHz with 16 GB of RAM. The
average run time for each one of the 84 problem sets was 120 s,
and the range was from 30 to 300 s. We tested the three objectives
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Table 1
Demand distribution per two-hour time intervals per day.

Time period Sun. Mon. Tue. Wed. Thu. Fri. Sat.

12 am–2 am 743 428 446 427 442 459 643
2 am–4 am 684 380 338 356 386 352 565
4 am–6 am 382 297 265 302 304 313 361
6 am–8 am 399 587 524 577 553 544 420
8 am–10 am 622 850 816 850 854 797 660
10 am–12 pm 780 1015 959 942 1033 951 822
12 pm–2 pm 863 994 941 1044 1041 1049 934
2 pm–4pm 870 1026 992 993 1014 1091 927
4 pm–6 pm 821 1029 1067 1033 1063 1108 949
6 pm–8 pm 866 883 916 884 911 888 970
8 pm–10 pm 847 728 757 760 764 876 875
10 pm–12 am 648 591 648 612 673 812 906

Total 8525 8808 8669 8780 9038 9240 9032
using actual data from a metropolitan county approximately 540
square miles with a population of 801,137 in 2004. In that year,
the county received a total of 77,292 calls, of which 62,092 were
classified as ‘‘medical emergency.’’ As mentioned previously we
superimposed a two mile by two mile grid over the county for call
aggregation purposes. This generated a total of 168 demand nodes
and we assumed that the ambulances could be posted at any of
the nodes except those that constituted a boundary node, which
resulted in 104 potential ambulance locations. Most boundary
nodes are typically less than the four sq.miles and contain very few
calls, if any. Data analyses (See Table 1) showed that the county’s
call demanddistribution fluctuates significantly by day of theweek
and time of day [46]. Table 1 displays the yearly demand for each
of the two-hour time intervals.

We can also see that the volume of calls begins to increase
around 8 a.m. and the peak is usually between 4 pm and 6 pm,
before slowly declining.

4.1. Impact on coverage

We consider the performance of the three different objectives
(1) Maximizing Coverage, (2) Minimizing Average Response Time
and (3) Maximizing Survivability with respect to coverage for
different fleet sizes (20–23 ambulances). Coverage, computed via
the simulation, is the percentage of calls covered within a given
response time threshold.Wealso know fromour data that different
days in a week have different demand distributions. Therefore,
we attempt to determine whether there is an interaction between
the different days in a week and each of the three independent
variables (Fig. 2). An analysis of variance is used to determine if
the independent variables (model, fleet size, and day and time of
the week) are statistically significant with respect to coverage. The
results of the analysis of variance are given in Table A.1 in the
Appendix.

Table A.1 in the Appendix shows the impact of the independent
variables, on the dependent variable, coverage. The type of
objective (Maximize Coverage, Minimize Average Response Time,
and Maximize Survivability) has a statistically significant effect on
percentage of calls covered (p < 0.05). We also see that the fleet
size (20, 21, 22, or 23 ambulances) has a significant impact on
percentage of calls covered, as well as the day and time of theweek
(p < 0.05). In addition, notice that there is a statistically significant
interaction between the type of objective and the number of
ambulances (p < 0.05). These effects are explained in further
detail by analyzing Figs. 3–7.

We can see in Fig. 3 that the Maximum Coverage objective is
significantly better than theMinimumAverage Response Time ob-
jective (p < 0.05) in terms of coverage. However there is no
statistically significant difference between the Maximum Surviv-
ability objective and Maximum Coverage objective. Therefore, we
Fig. 3. Impact on coverage for 20, 21, 22 and 23 ambulances.

Fig. 4. Impact on coverage (20 ambulances).

Fig. 5. Impact on coverage (21 ambulances).
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Table 2
% coverage at different response time intervals.

Time (min) 0–3 0–6 0–9 0–12 0–15

Fleet size: 20 ambulances

Max. Coverage 9.32% 35.88% 65.06% 82.52% 91.07%
Min. Avg. Response Time 9.62% 37.23% 65.37% 81.54% 89.14%
Max. Survivability 10.10% 38.74% 67.23% 83.34% 91.19%

Fleet size: 21 ambulances

Max. Coverage 8.88% 36.71% 66.40% 85.04% 93.99%
Min. Avg. Response Time 9.53% 38.70% 67.95% 84.96% 92.93%
Max. Survivability 9.80% 39.37% 68.91% 85.88% 93.96%

Fleet size: 22 ambulances

Max. Coverage 10.23% 41.73% 72.18% 88.20% 95.20%
Min. Avg. Response Time 11.16% 44.00% 74.07% 88.71% 94.68%
Max. Survivability 11.36% 44.57% 74.54% 89.05% 95.24%

Fleet size: 23 ambulances

Max. Coverage 12.13% 45.74% 74.96% 90.22% 96.07%
Min. Avg. Response Time 13.09% 48.51% 76.92% 90.62% 95.62%
Max. Survivability 13.37% 48.86% 77.37% 91.00% 96.13%
Fig. 6. Impact on coverage (22 ambulances).

can conclude that the Maximum Survivability objective is clearly
superior to theMinimum Average Response Time objective, which
sacrifices coverage in order to achieve its objective.

Fig. 3 also shows the interaction effect. As the fleet size increases
from 20 to 23 ambulances the Minimum Average Response Time
objective performs much closer to the other two objectives. As
expected, coverage is worst for all three objectives when the fleet
size is 20.

Figs. 4–7, show the impact of coverage for different days of the
week with respect to fleet size (20, 21, 22, and 23 ambulances).
The patterns in Figs. 4 through 7 are consistent with what is
seen in Fig. 3. The Maximum Coverage and the Maximum Survival
objectives give us the best coverage and the Minimum Average
Response Time objective performs worse. However, the difference
in performance between Minimum Average Response Time and
the other two objectives is reduced as the number of ambulances
is increased. We can also see in days where the system is
stressed (i.e., heavy demand) such as on Tuesdays, Wednesdays
and Thursdays, and number of servers is small the Minimum
Average Response Time objective performs noticeably worse than
the Maximum Coverage and the Maximum Survival objectives.

These figures also confirm that the performance of the
Minimum Average Response Time objective improves as the
number of servers increase. We also consider the impact of these
objectives on the percentage of calls covered within 3, 6, 9, 12
and 15 min in Table 2 for a varying fleet size (20, 21, 22 and 23
ambulances).

As expected, the Minimum Average Response Time and the
Maximum Survivability objectives cover a greater percentage of
Fig. 7. Impact on coverage (23 ambulances).

calls within 3 and 6 min interval than the Maximum Coverage
objective. This is because these later objectives value shorter
distances, or times, whereas the Maximum Coverage objective
assumes calls are covered as long as the RTT (or distance to call)
is within the specified threshold.

Fig. 8 shows the average cumulative percentage of calls covered
within five time intervals. The Survivability objective covers an
average of 1.02%more callswithin the first 3min than the Coverage
objective and given that it does not sacrifice in total coverage to
achieve this, it makes it the superior with respect to coverage. In
comparison theMinimumAverage Response Time objective covers
only an average of 0.71% more calls within the first 3 min than
the Coverage objective. Therefore, while it does cover more calls
within 3 min than the Coverage objective’s performance, it does
not match that of the Survivability objective.

4.2. Impact on survivability

Next, we consider the impact of using the three different
objectives with varying fleet size (20, 21, 22, and 23 ambulances)
on survivability. Table A.2 in the Appendix shows the result of
the analysis of variance on survivability. We find that all three
independent variables (i.e., Objective, Days, and Ambulances)
significantly affect the chance of survival (p < 0.05). There
is no significant interaction between the objective and day
and time of the week which indicates that objectives perform
consistently across different days and times of a week. There is
also no significant interaction between objectives and number of
ambulances.
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Fig. 8. Average cumulative coverage (%) for the three objectives.
Fig. 9. Impact on survivability with 20, 21, 22 and 23 ambulances.

Fig. 10. Impact on survivability (20 ambulances).

Fig. 9 shows that the Maximum Survivability objective clearly
gives the best results followed by Minimum Average Response
Time objective and thenMaximumCoverage objective. Also, as the
fleet size (20, 21, 22, and 23 ambulances) increases, the probability
of survival increases.

There is no statistically significant interaction between objec-
tive type and number of ambulances. However, we can see some
trends when we investigate by day of week in detail. Figs. 10–13
show the impact of each objective on survivability for each day of
the week and number of servers. We can see for small number of
servers (20) in Fig. 10, the Minimum Average Response Time ob-
jective and the Maximum Coverage objective produce similar re-
sults. However, as the number of servers increases (21, 22, 23) in
Fig. 11. Impact on survivability (21 ambulances).

Fig. 12. Impact on survivability (22 ambulances).

Figs. 11–13, the Minimum Average Response Time objective per-
forms better than theMaximumCoverage objective. However, this
is not statistically significant because the performance fluctuates
on different days of week. This is clearly seen in Fig. 11 where
the Minimum Average Response Time objective matches the per-
formance of the Maximum Survivability objective on some days
and on others days this objective performs as poorly as the Max-
imum Coverage objective. This is because the Minimum Average
Response Time objective performs better when more servers are
available or demand is not high.

For smaller fleet sizes and on days when demand is high the
solutions from the Minimum Average Response Time objective do
notmatch thequality of the solutions obtainedusing theMaximum
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Table 3
Survivability for different response time intervals.

Time (min) 0–3 3–6 6–9 9–12 12–15

Fleet size: 20 ambulances

Max. Coverage 4.52% 9.94% 6.11% 0.77% 0.00%
Min. Avg. Response Time 4.62% 10.30% 5.83% 0.71% 0.00%
Max. Survivability 4.94% 10.78% 5.97% 0.70% 0.00%

Fleet size: 21 ambulances

Max. Coverage 4.42% 10.54% 6.24% 0.81% 0.00%
Min. Avg. Response Time 4.77% 11.05% 6.12% 0.73% 0.00%
Max. Survivability 4.90% 11.22% 6.20% 0.73% 0.00%

Fleet size: 22 ambulances

Max. Coverage 5.00% 11.82% 6.37% 0.71% 0.00%
Min. Avg. Response Time 5.48% 12.37% 6.27% 0.64% 0.00%
Max. Survivability 5.57% 12.53% 6.26% 0.63% 0.00%

Fleet size: 23 ambulances

Max. Coverage 5.99% 12.63% 6.12% 0.66% 0.00%
Min. Avg. Response Time 6.47% 13.34% 5.92% 0.59% 0.00%
Max. Survivability 6.63% 13.37% 5.97% 0.59% 0.00%
Fig. 13. Impact on survivability (23 ambulances).

Survivability objective. Table 3 shows the survivability data from
time intervals from 0 to 3 min, 3 to 6 min, 6 to 9 min, 9 to 12 min
and 12 to 15 min.

Given the survivability function, the chance of survival after
10 min drops to 0%. Since the survivability depends on the calls
coveredwithin a certain time period, we calculate the survivability
measure by multiplying the product of the percentage of calls
coveredwithin a certain time interval by theprobability of survival.
Table 3 follows a similar pattern to Table 2. Ambulance locations
provide the Maximum Survivability objective the best results
within the first 3 min followed by theMinimumAverage Response
Time objective and then, lastly, by the Maximum Coverage
objective. With 20 servers the Minimum Average Response Time
objective’s performance is closer to the Maximum Coverage
objective and it improves as the number of servers increase.

Fig. 14 shows the average performance of all three objectives
on survivability. Within the first three minutes, the Maximum
Survivability objective outperforms the other two objectives.
Within the critical 3 min time interval the chance of survival
increases on average by 0.5%, as compared to the Maximum
Coverage objective, and 0.31% over the Minimum Average
Response Time objective, or an additional 50 and 31 lives saved
per 10,000 cardiac arrest calls, respectively.

4.3. Impact on average response times

Fig. 15, shows the impact of the three different objectives on
average response times per call. Table A.3 in the Appendix displays
the results of the Analysis of Variance conducted on the data.

All three independent variables are statistically significant (p <
0.05). As expected the Maximum Coverage objective gives us the
worst average response times and is significantly (p < 0.05) dif-
ferent fromMinimum Average Response Time and Maximum Sur-
vivability. There is no statistically significant difference between
Fig. 14. Average cumulative survivability (%) for three objectives.
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Fig. 15. Impact on average response time for 20, 21, 22, and 23 servers.

Fig. 16. Impact on cumulative response times (20 amb.)

MinimumAverage Response Time andMaximumSurvivability.We
can also conclude that as the number of ambulances increase the
average response time decreases. There is no statistical difference
in average response time when the number of ambulances is 20
and 21. However, when the number of ambulances increase to 22
and 23 the decrease in average response time is statistically signif-
icant (p < 0.05).

Upon further investigation, when we break the data up by day
as shown in Figs. 16–19 the response time for different days of
the week is also statistically significant (p < 0.05) due to the
different demand patterns each day. We can also see a significant
interaction between number of ambulances and different days of
the week (p < 0.05). The Maximum Coverage model consistently
has the biggest response time for every day of the week for the
different kinds of servers while the other two objectives have
similar response times.We also can see that Thursdays and Fridays
consistently have a higher average response time than other days.
This is due to higher call volume.We can also see that the difference
between Thursdays and Fridays is higher when we have 20 or 21
ambulances than when we have 22 or 23 ambulances showing the
interaction between the number of ambulances and the days of the
week.

4.4. Impact on workload balance

The coefficient of variation (CV), which is the ratio of the
standard deviation of how busy ambulances are and the average
busy probability, is used to calculate workload balance [38]. The
larger the CV the more variation there is among the different
ambulances deployed, hence less workload balance among the
crews. Table A.4 in the Appendix shows the results of an analysis
of variance on the CV for the ambulances. We can see that while
the day and time of the week and number of ambulances are
Fig. 17. Impact on cumulative response times (21 amb.)

Fig. 18. Impact on cumulative response times (22 amb.)

Fig. 19. Impact on cumulative response times (23 amb.)

statistically significant (p < 0.05), the kind of objective used is
not statistically significant.

Fig. 20 shows the average CV for the three different objectives
for varying fleet size (20, 21, 22 and 23 ambulances). Here we
observe that the Minimum Average Response objective has the
highest CV for 20 and 21 servers, and then declines quite sharply
for 22 and 23 servers. In Figs. 21–24 we show that there is a high
degree of fluctuation between the three different objectives during
different day and times of the week.

If we average the CV for each objective as shown in Fig. 20,
the Maximum Coverage is the worst (70.33%), followed by
MinimumAverage Response objective (69.90%), and theMaximum
Survivability objective (69.52%). However, since there is so much
variationwith respect to the day and time of theweekwith respect
to the three objectives, and the fleet size, the interaction as shown
in Table A.4 is not statistically significant.
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Fig. 20. Impact of fleet size on workload balance (CV).

Fig. 21. Impact on equity (20 ambulances).

Fig. 22. Impact on equity (21 ambulances).

Fig. 23. Impact on equity (22 ambulances).

Fig. 24. Impact on equity (23 ambulances).
4.5. Comparing simulated response times to actual response times

Table 4 shows the percentage of actual calls covered by
in year 2004 versus the percentage of calls covered by our
simulation–optimizationmodelwith a fleet size of 23 ambulances.

Overall the coverage statistics from the simulation model with
the three objectives follow closely the same coverage pattern
obtained from the actual data. The net differences in coverage
between the actual data and maximum survivability objective
ranges from 2.75% to 7.96%. There is about a net 3% difference
between calls covered by our model and the MEDIC for the
first six minutes. Some of the differences can be attributed
to flexible deployment practices of MEDIC such as ambulances
originally intended (enroute) to low priority calls are at times
diverted towards high priority calls. On some other occasions,
idle ambulances returning to the headquarters to end their shift
can be dispatched to a high priority emergency or posted at
a location temporarily while another unit is rushed to another
emergency. For high priority calls when the available ambulances
are significantly outside the target RT or in an exceptionally
rare moment when all ambulances are busy, the dispatcher can
reach out to the private ambulance operators and Charlotte Fire
Department to dispatch an ambulance and a fire truck (with an
EMT) at the same time. Similar issue is faced in county border
areas as well. Like most EMS operators MEDIC has ‘mutual aid
agreements’ with surrounding county EMS operators for handling
high priority calls.

5. Conclusions

In this paper, we developed a simulation model of the EMS
operations to compare the performance of three well-known
location model objectives in the recent literature: Maximum
Coverage, Minimum Average Response Time, and Maximum
Survivability. The simulation model removed several simplifying
assumptions that are necessary in analytical models. The output
generated from the simulation model enabled us to analyze
coverage and survivability statistics for various response time
intervals. This enabled us to better understand the differences
between the objectives of the three models with respect to the
given data which was highly variable depending on the day and
time of the week. We evaluated the objectives on four criteria: (1)
Percentage of calls covered, (2) Survivability, (3) Average Response
Time, and (3)Workload balance among the fleet. Our findings show
that the Maximum Survivability objective is superior to the other
two objectives. The Maximum Survivability objective matched or
performed significantly better than the other two objectives in all
the four criteria. Table 5 summarizes our experimental results and
rankings of the four objectives according to their performancewith
respect to the four criteria. It should be noted that the Minimum
Average Response Time objective, while performing well in three
of the four criteria, requires a larger sacrifice in coverage to achieve
its goals. TheMaximumCoverage objective performed theworst in
three of the four criteria.

Most EMS agencies use coverage measures for deployment
planning, and performance tracking and reporting purposes [1].
Our results suggest that using a survivability objective tends
to produce better coverage results than the maximum coverage
objective. EMS agencies can benefit from the use of such models
for planning purposes such as determining the posts (staging
locations) of their fleet. However, for reporting and performance
tracking, survivability statistics could be difficult to collect and
explain to the governing body (city or county boards) and even
more so to the public. First, estimating patient survival is difficult
since it is assessed at the hospital and a patient may be discharged
several days after delivery to the emergency department. Second,
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Table 4
Actual versus simulated coverage statistics.

Response Time (min) 0–3 0–6 0–9 0–12 0–15

Actual 16.12% 52.02% 85.33% 96.34% 98.91%
Max. Coverage 12.13% 45.74% 74.96% 90.22% 96.07%
Min. Avg. Response Time 13.09% 48.51% 76.92% 90.62% 95.62%
Max. Survivability 13.37% 48.86% 77.37% 91.00% 96.13%
Table 5
Summary of the results.

Maximum survivability Minimum Avg. Response Time Maximum coverage

Coveragea 1 3 2
Survivabilityb 1 2 3
Response Timec 1 2 3
Equityd 1 2 3
a Maximum survivability and maximum coverage are not statistically different but minimum average response time is.
b All three objectives are statistically different from each other.
c Maximum survivability and minimum average response time are not statistically different but maximum coverage is.
d None of the three objectives are statistically different from each other.
patient survival information is not readily available due to
medical privacy regulations. Third, the few published survivability
functions are derived from data on out-of-hospital cardiac arrests.
These numbers indicate that the probability of survival is about
55% if there is an immediate intervention (a response time of
nearly zero minutes) with a rapid decline in probability of survival
after the first few minutes and almost zero chances of survival
past the standard 9–10 min response time. In case of heart
attacks (myocardial infarction with ST elevation) the patient’s
one-year mortality increases by 7.5% for every 30 min of delay
in receiving percutaneous coronary intervention (PCI) which can
only be delivered at an appropriate receiving facility. Unlike
survivability statistics, response times are easy to obtain and
evaluate. Thus, based on our results and taking into account the
difficulty of estimating survivability rates ambulance operators
should consider using a ‘‘maximum survivability model’’ for
deployment planning purposes while simultaneously reporting
compliance statistics, such as 90% of calls covered within 9 min.

There are some limitations of this study that are important
to acknowledge. First, due to the nature of the problem we are
constrained to usemeta-heuristics. Therefore, the solutions are not
guaranteed to be optimal. Second, the problem domain has been
discretized. All demand is assumed to be aggregated at the center
of a 2 by 2 square mile zone and the servers are also assumed to be
located at the center of these demand zones and the travel times
are computed using Manhattan distance metric between zone
centers. Although this is consistent with analytical approaches,
ideally one would prefer to use the actual road network in the
simulation model, which is likely to add a major computational
burden. Third, when the optimization routine determines the new
locations for ambulances at the beginning of each two-hour block,
the actual movement of the ambulances to their new locations is
not simulated. And, fourth, we assumed all calls from our available
data are of equal priority, which is perhaps reflected in the low
survivability values.

Future research may consider using the exact longitude and
latitude of the calls, and allowing the ambulances to be located
anywhere on the road network. Also, it would be of interest to
look at the stratification of calls as classified by their priority
and based on this consider alternative dispatch policies while
maximizing survivability for priority 1 patients. For example, the
coverage performancemeasure could be divided into hard and soft
coverage for high to low priority calls. This will in effect make the
coverage performance measure a proxy of a survival function. It
will be worthwhile to explore the performance of such a coverage
measure with the survival functions found in literature.
Table A.1
Analysis of variance for the dependent variable coverage.

Source Sig. (p-value) Observed powera

Objective* 0.000 1.000
Day* 0.000 1.000
Ambulances* 0.000 1.000
Objective × Day 0.998 0.135
Objective × Ambulances* 0.010 0.887
Day × Ambulances* 0.000 1.000
Objective × Day × Ambulances 1.000 0.167
a Computed using alpha = 0.05.
* Refers to variables which are statistically significant at (p < 0.05).

Table A.2
Analysis of variance for the dependent variable survivability.

Source Sig. (p-value) Observed powera

Objective* 0.000 1.000
Day* 0.000 1.000
Ambulances* 0.000 1.000
Objective × Day 1.000 0.081
Objective × Ambulances 0.563 0.324
Day × Ambulances* 0.000 1.000
Objective × Day × Ambulances 1.000 0.097
a Computed using alpha = 0.05.
* Refers to variables which are statistically significant at (p < 0.05).

Table A.3
Analysis of variance for the dependent variable response time.

Source Sig. (p-value) Observed powera

Objective* 0.00 1.000
Day* 0.00 1.000
Ambulances* 0.00 1.000
Objective × Day 1.000 1.000
Objective × Ambulances 0.970 1.000
Day × Ambulances* 0.00 0.081
Objective × Day × Ambulances 1.000 0.324
a Computed using alpha = 0.05.
* Refers to variables which are statistically significant at (p < 0.05).
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Table A.4
Analysis of variance dependent variable coefficient of variation.

Source Sig. (p-value) Observed powera

Objective 0.601 0.134
Day* 0.000 1.000
Ambulances* 0.000 0.997
Objective × Day 1.000 0.073
Objective × Ambulances 0.995 0.078
Day × Ambulances* 0.000 1.000
Objective × Day × Ambulances 1.000 0.070
a Computed using alpha = 0.05.
* Refers to variables which are statistically significant at (p < 0.05).

Appendix. ANOVA tables (significance and observed power
columns only)

See Tables A.1–A.4.
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